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Abstract

Given two coprime integers p ≥ 2 and q ≥ 3, let Dp ⊂ [0, 1) consist of all rational numbers which
have a finite p-ary expansion, and let

K (q,A) =

⎧⎨⎩
∞∑

i=1

di

qi : di ∈ A ∀i ∈ N

⎫⎬⎭ ,

here A ⊂ {0, 1, . . . , q − 1} with cardinality 1 < #A < q . In 2021 Schleischitz showed that
(Dp ∩ K (q,A)) < +∞. In this paper we show that for any r ∈ Q and for any α ∈ R,

#
(
(r Dp + α) ∩ K (q,A)

)
< +∞.

© 2024 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Given q ∈ N≥3 and A ⊂ {0, 1, . . . , q − 1} with cardinality 1 < #A < q, we define the
antor set K (q,A) ⊂ [0, 1] by

K (q,A) :=

{
∞∑

i=1

di

q i
: di ∈ A ∀i ∈ N

}
.
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In particular, the choice of q = 3 and A = {0, 2} corresponds to the classical middle-third
antor set. Given p ∈ N≥2, we define

Dp :=

{
n∑

i=1

di

pi
: di ∈ {0, 1, . . . , p − 1} ∀1 ≤ i ≤ n; n ∈ N

}
. (1.1)

hen Dp consists of all rational numbers in [0, 1) which have a finite p-ary expansion. It is
lear that Dp is countably infinite and dense in [0, 1].

When p = 10, q = 3 and A = {0, 2}, Wall [7] showed that

D10 ∩ K (3, {0, 2}) =

{
1
4
,

3
4
,

1
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,
3
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,

7
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,
9
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,
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,
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40
,

9
40
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,
27
40

,
31
40

,
37
40

,
39
40

}
.

ater, Nagy [4] proved that for each prime number p ∈ N≥4, the set Dp ∩ K (3, {0, 2}) is finite.
loshchitsyn [1] generalized this result and proved that if p > q2 is a prime number, then

he set Dp ∩ K (q,A) is finite. The general result was recently obtained by Schleischitz [5,
orollary 4.4] (some further extensions can be found in [3,6]).

heorem 1.1 (Schleischitz, 2021). Let p ∈ N≥2 and q ∈ N≥3 with gcd(p, q) = 1. If
A ⊂ {0, 1, . . . , q − 1} with 1 < #A < q, then we have

#
(
Dp ∩ K (q,A)

)
< +∞.

In this paper we extend Theorem 1.1 as follows.

Theorem 1.2. Let p ∈ N≥2 and q ∈ N≥3 with gcd(p, q) = 1. If A ⊂ {0, 1, . . . , q − 1} with
< #A < q, then for any r ∈ Q and any α ∈ R we have

#
(
(r Dp + α) ∩ K (q,A)

)
< +∞.

Note that in Theorem 1.1 the intersection Dp ∩ K (q,A) contains only rational numbers,
hile in Theorem 1.2 the intersection (r Dp + α) ∩ K (q,A) involves irrational numbers if

α /∈ Q. To prove Theorem 1.2, we may assume that #A = q − 1, which means the set A
only misses one digit in {0, 1, . . . , q − 1}. In terms of Theorem 1.2 we make the following
conjecture, which claims that the conclusion still holds also for irrational x .

Conjecture 1.3. Under the same condition as in Theorem 1.2, the conclusion

#
(
(r Dp + α) ∩ K (q,A)

)
< +∞

also holds for any r /∈ Q and any α ∈ R.

We will prove our main result Theorem 1.2 in the next section.

2. Proof of Theorem 1.2

In the following we fix two coprimes p ∈ N≥2, q ∈ N≥3 and the digit set A ⊂

{0, 1, . . . , q − 1} with #A = q − 1. For a real number x ∈ R, we write ⟨x⟩ for the fractional
part of x , i.e., ⟨x⟩ ∈ [0, 1) and x − ⟨x⟩ ∈ Z. For x ∈ [0, 1), the q-ary expansion of x is the
sequence (xi ) in {0, 1, . . . , q − 1}

N such that

x =

∞∑ xi

q i
.

i=1
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The q-ary expansion is unique except for countably many points that have precisely two q-ary
xpansions, one is finite and the other one ends in a periodic sequence with period q − 1. For
onvenience, for these countably many exceptional points, the q-ary expansion refers to the
nite expansion. In order to prove Theorem 1.2 we need the following lemma which can be
educed from Theorem 1.1.

emma 2.1. Let d1d2 . . . dk ∈ {0, 1, . . . , q − 1}
k be a block and r ∈ Q \ {0}. Then for all

ut finitely many x ∈ r Dp, the block d1d2 . . . dk occurs in the q-ary expansion of ⟨x⟩ infinitely
ften.

roof. Write r = s/t with s ∈ Z, t ∈ N, and gcd(s, t) = 1. We can find ℓ ∈ N such that

gcd
( t

gcd(t, qℓ)
, q
)

= 1. (2.1)

Let h := t/gcd(t, qℓ). Since gcd(h, q) = gcd(p, q) = 1, we have gcd(hp, qk) = 1. By
heorem 1.1, we have

#
(
Dhp ∩ K (qk,B)

)
< +∞, (2.2)

where

B =
{
0, 1, . . . , qk

− 1
}

\
{
d1qk−1

+ d2qk−2
+ · · · + dk−1q + dk

}
.

his implies that for any y ∈ Dhp\K (qk,B), the block d1d2 . . . dk occurs in the q-ary expansion
f y. Note that each y ∈ Dhp has a purely periodic q-ary expansion because gcd(hp, q) = 1
cf. [2, Proposition 2.1.2]). Thus, for any y ∈ Dhp \ K (qk,B), the block d1d2 . . . dk occurs in
he q-ary expansion of y infinitely often.

For ℓ defined in (2.1), consider the function f defined by

f : R → [0, 1); x ↦→ ⟨qℓx⟩.

ote that the q-ary expansions of ⟨x⟩ and f (x) have the same tail. Then for each x ∈

f −1
(
Dhp \ K (qk,B)

)
, the block d1d2 . . . dk occurs in the q-ary expansion of ⟨x⟩ infinitely

ften. It suffices to show that

#
(

(r Dp) \ f −1(Dhp \ K (qk,B)
))

< +∞. (2.3)

By (1.1), we can rewrite Dp as

Dp =

∞⋃
n=1

{ d
pn

: d ∈ {0, 1, . . . , pn
− 1}

}
.

ote that h = t/gcd(t, qℓ). Then for any d/pn
∈ Dp, we have

f
(

r ·
d
pn

)
=

⟨
qℓ

·
s
t

·
d
pn

⟩
=

⟨ qℓ

gcd(t, qℓ)
·

s
h

·
d
pn

⟩
=

⟨ qℓ

gcd(t, qℓ)
·

shn−1d
(hp)n

⟩
∈ Dhp.

o, we obtain that f (r Dp) ⊂ Dhp, and then r Dp ⊂ f −1(Dhp). This implies that

(r Dp) \ f −1(Dhp \ K (qk,B)
)

=

(
(r Dp) ∩ f −1(Dhp)

)
\ f −1(Dhp \ K (qk,B)

)
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= (r Dp) ∩

(
f −1(Dhp) \ f −1(Dhp \ K (qk,B)

))
= (r Dp) ∩ f −1(Dhp ∩ K (qk,B)

)
.

ext, we show that f is finite-to-one on r Dp, i.e., for any y ∈ Dhp, #
(
(r Dp) ∩ f −1({y})

)
<

+∞. Then, by (2.2) we obtain (2.3) as desired.
Let p1, p2, . . . , pu be all distinct prime factors of p. Then each point in Dp \ {0} has the

unique representation of the form
a

pn1
1 pn2

2 · · · pnu
u

with a ∈ N, gcd(a, p) = 1 and n1, n2, . . . , nu are all nonnegative integers. For any y =

/(hp)n
∈ Dhp, if

f
(

r ·
a

pn1
1 pn2

2 · · · pnu
u

)
=

⟨
qℓ

·
s
t

·
a

pn1
1 pn2

2 · · · pnu
u

⟩
=

⟨ qℓ

gcd(t, qℓ)
·

sa
hpn1

1 pn2
2 · · · pnu

u

⟩
= y =

d
(hp)n

,

then by using gcd(a, p) = 1 and gcd(q, p) = 1 we obtain that

pn1
1 pn2

2 · · · pnu
u | s(hp)n.

This implies that all possible n1, n2, . . . , nu are bounded. Thus, we conclude that #
(
(r Dp) ∩

f −1({y})
)

< +∞, completing the proof. □

We also need the following lemma.

emma 2.2. Let α ∈ R and d ∈ {1, 2, . . . , q − 2} so that q − d ̸∈ A. If the q-ary expansion
αi ) of ⟨α⟩ satisfies αi ≥ d for all i ∈ N, then

#
(
(r Dp + α) ∩ K (q,A)

)
< +∞ (2.4)

or any r ∈ Q.

roof. If r = 0, then (2.4) holds trivially. In the following we fix r ∈ Q \ {0}. Take α ∈ R
uch that the q-ary expansion (αi ) of ⟨α⟩ satisfies αi ∈ {d, d + 1, . . . , q − 1} for all i ∈ N. We
ill prove (2.4) according to different properties of (αi ). More precisely, for 0 ≤ k ≤ q − d let

Ak :=

{
(ai ) ∈ {d, d + 1, . . . , q − 1}

N
: the length of any block in (ai ) with

each digit < q − k is uniformly bounded
}
.

hen A0 = ∅ and Aq−d = {d, d + 1, . . . , q − 1}
N. Note that Ak ⊂ Ak+1 for 0 ≤ k < q − d .

hus,

(Aq−d \ Aq−d−1) ∪ · · · ∪ (A2 \ A1) ∪ (A1 \ A0) = Aq−d \ A0 = {d, d + 1, . . . , q − 1}
N.

o it suffices to prove that for any 0 ≤ k < q − d ,

#
(
(r D + α) ∩ K (q,A)

)
< +∞ if (α ) ∈ A \ A . (2.5)
p i k+1 k
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We will split the proof of (2.5) into two cases: 0 ≤ k < d , and d ≤ k < q − d (assuming
d < q).

ase 1. (αi ) ∈ Ak+1 \ Ak for some 0 ≤ k < d . Since (αi ) ∈ Ak+1, the set

{n1, n2, n3, . . .} := {i ∈ N : αi ≥ q − k − 1} (2.6)

s infinite, where n1 < n2 < n3 < · · · , and there exists m ∈ N such that ni+1 − ni ≤ m for all
∈ N. Note that 0 ≤ k < d < q . Then 1 ≤ q − d + k ≤ q − 1.

Take x ∈ r Dp such that the block (q − d + k)m+10 occurs in the q-ary expansion (xi ) of
x⟩ infinitely often, and let

{k1, k2, k3, . . .} := {i ∈ N≥n1 : xi+1xi+2 · · · xi+m+2 = (q − d + k)m+10}, (2.7)

here k1 < k2 < k3 < · · · . Note that the q-ary expansion of ⟨x⟩ is eventually periodic. Then
he sequence {ki+1 − ki }i∈N is bounded.

laim. there exists i0 ∈ N such that αki0 + j ≤ q − k − 1 for all 1 ≤ j ≤ m + 2.

Suppose on the contrary that the claim fails. Then for each i ∈ N the block αki +1αki +2 · · ·

ki +m+2 contains at least one digit ≥ q − k. Note that {ki+1 − ki }i∈N is bounded. Then the
ength of any block in (αi ) with each digit < q − k is uniformly bounded. This implies that
αi ) ∈ Ak , leading to a contradiction with our assumption.

Since the sequence {ni+1 − ni }i∈N is bounded by m and ki0 ≥ n1, there exists 1 ≤ m ′
≤ m

uch that ki0 + m ′
∈ {ni }, and thus by (2.6) and the claim it follows that αki0 +m′ = q − k − 1.

hus, by (2.7) and using αi ≥ d for all i ∈ N we obtain that
∞∑

i=1

xki0 +m′−1+i

q i
+

∞∑
i=1

αki0 +m′−1+i

q i
>

(
q − d + k

q
+

q − d + k
q2

)
+

(
q − k − 1

q
+

d
q2

)
≥ 1 +

q − d
q

,

nd
∞∑

i=1

xki0 +m′−1+i

q i
+

∞∑
i=1

αki0 +m′−1+i

q i
<

(
q − d + k

q
+

q − d + k + 1
q2

)
+

q − k
q

≤ 1 +
q + 1 − d

q
.

hence,⟨
qki0 +m′

−1(x + α)
⟩
=

⟨ ∞∑
i=1

xki0 +m′−1+i

q i
+

∞∑
i=1

αki0 +m′−1+i

q i

⟩
∈

(q − d
q

,
q + 1 − d

q

)
.

his implies that x + α ̸∈ K (q,A). So, applying Lemma 2.1 for the block (q − d + k)m+10
nvolved in the q-ary expansion of x in (2.7), it follows that #

(
(r Dp + α) ∩ K (q,A)

)
< +∞.

Case 2. (αi ) ∈ Ak+1 \ Ak for some d ≤ k < q − d with the assumption 2d < q .
Similar to Case 1, since (αi ) ∈ Ak+1, the set

{n , n , n , . . .} := {i ∈ N : α ≥ q − k − 1}
1 2 3 i
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is infinite, where n1 < n2 < n3 < · · · , and there exists m ∈ N such that ni+1 − ni ≤ m for all
∈ N. Note that 1 ≤ d ≤ k < q − d. Then 1 ≤ k − d + 1 ≤ q − 1. Take x ∈ r Dp such that

he block (k − d + 1)m0 occurs in the q-ary expansion (xi ) of ⟨x⟩ infinitely often, and write

{k1, k2, . . .} := {i ∈ N≥n1 : xi+1xi+2 · · · xi+m+1 = (k − d + 1)m0}, (2.8)

where k1 < k2 < · · · . Note that the q-ary expansion of ⟨x⟩ is eventually periodic. Then the
sequence {ki+1 − ki }i∈N is bounded. Since (αi ) /∈ Ak , by the same argument as in Case 1 we
an find i0 ∈ N such that αki0 + j ≤ q −k −1 for all 1 ≤ j ≤ m +1, and there exists 1 ≤ m ′

≤ m
uch that ki0 + m ′

∈ {ni } and αki0 +m′ = q − k − 1. Thus,
∞∑

i=1

xki0 +m′−1+i

q i
+

∞∑
i=1

αki0 +m′−1+i

q i
>

k − d + 1
q

+
q − k − 1

q
=

q − d
q

,

nd
∞∑

i=1

xki0 +m′−1+i

q i
+

∞∑
i=1

αki0 +m′−1+i

q i

<

(m−m′
+1∑

i=1

k − d + 1
q i

+
1

qm−m′+2

)
+

(m−m′
+2∑

i=1

q − k − 1
q i

+
1

qm−m′+2

)

=

m−m′
+1∑

i=1

q − d
q i

+
q − k + 1
qm−m′+2

≤
q + 1 − d

q
.

hence,⟨
qki0 +m′

−1(x + α)
⟩
∈

(q − d
q

,
q + 1 − d

q

)
,

hich implies x + α ̸∈ K (q,A). Therefore, applying Lemma 2.1 for the block (k − d + 1)m0
involved in the q-ary expansion of x in (2.8), we deduce that #

(
(r Dp +α) ∩ K (q,A)

)
< +∞.

This together with Case 1 proves (2.5), completing the proof. □

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. If r = 0, then it holds trivially. In the following we fix r ∈ Q\{0} and
α ∈ R. Let (αi ) denote the q-ary expansion of ⟨α⟩. Since #A = q − 1, there exists 1 ≤ d ≤ q
such that q − d ̸∈ A. We split the proof into two cases according to (αi ).

Case 1. For any m ∈ N the sequence (αi ) contains the block 0m .
Fix x ∈ r Dp such that the block (q −d)0 occurs in the q-ary expansion (xi ) of ⟨x⟩ infinitely

often, and write

{k1, k2, . . .} := {i ∈ N : xi+1xi+2 = (q − d)0}, (2.9)

where k1 < k2 < · · · . Note that the q-ary expansion of ⟨x⟩ is eventually periodic. Then the
sequence {ki+1 − ki }i∈N is bounded. Observe that (αi ) contains arbitrarily long consecutive
zeros. There exists i0 ∈ N such that αki0 +1αki0 +2 = 00. Thus, by using xki0 +1xki0 +2 = (q − d)0
it follows that

q − d
q

<

∞∑ xki0 +i

q i
+

∞∑ αki0 +i

q i
<

q + 1 − d
q

,

i=1 i=1
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which implies
⟨
qki0 (x+α)

⟩
̸∈ K (q,A). So, x+α ̸∈ K (q,A). Applying Lemma 2.1 for the block

(q −d)0 involved in the q-ary expansion of x in (2.9), it follows that #
(
(r Dp +α)∩K (q,A)

)
<

+∞.
Case 2. There exists m ∈ N such that the sequence (αi ) does not contain the block 0m .
Note that K (q,A) = K (q ′,A′), where

q ′
= qm+1 and A′

=

{
m∑

i=0

εi q i
: εi ∈ A ∀0 ≤ i ≤ m

}
.

Then it suffices to show that #
(
(r Dp + α) ∩ K (q ′,A′)

)
< +∞. Since gcd(p, q) = 1, we have

gcd(p, q ′) = 1. Observe that

⟨α⟩ =

∞∑
i=1

αi

q i
=

∞∑
k=1

1
qk(m+1)

(
m∑

i=0

αk(m+1)−i q i

)
=

∞∑
k=1

α′

k

(q ′)k
,

where

α′

k :=

m∑
i=0

αk(m+1)−i q i . (2.10)

Then the sequence (α′

k) is the q ′-ary expansion of ⟨α⟩. Since the sequence (αi ) does not contain
the block 0m , for each k ∈ N there exists 1 ≤ ik ≤ m such that αk(m+1)−ik > 0. It follows from
(2.10) that α′

k ≥ q ≥ d for all k ∈ N. Furthermore, since q − d ̸∈ A, we have

q ′
− d = q − d + (q − 1)q + (q − 1)q2

+ · · · + (q − 1)qm
̸∈ A′.

Clearly, we have 1 ≤ d ≤ q < q ′
− 1. Thus, applying Lemma 2.2 for the set K (q ′,A′) we

conclude that #
(
(r Dp + α) ∩ K (q ′,A′)

)
< +∞. □
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